
 Visual Basic For DOS
 Visual Basic For Windows
 Windows 3.1 Help Files
 Other Sources Of Help
 Programmer Tools
 VB Program Updates
 Release History
 About The Developer
 About Visual Basic Tips & Tricks
 Glossary Of Topics

Visual Basic For DOS
 Files & Directories

Finding Directories
How do you test to see if a directory exists with Visual Basic for DOS? You might want to use the
DIR$ command like this:
DIR$("c:\test*.*")
This will work as long as there are files in the directory. But how about if the directory is empty? The
above code won't work.
To get around this I use the "nul" specification. Every directory has a "nul" file in it, regardless if there
are any other (real) files in it or not. Below is how to use it:
XY$ = DIR$("c:\test\nul")
IF XY$ <> "nul" THEN
 MKDIR "c:\test"
END IF
Submitted By: David McCarter

Visual Basic For Windows
 Access
 Buttons & Image Control
 Controls
 Disks & Files
 Forms
 Graphics
 Hot Spots
 List Boxes
 Menus
 Miscellaneous
 Text Boxes
 Windows

Access
 Printing Blank Fields
 Copying Rows In Access

Printing Blank Fields
I was converting some Visual Basic 1.0 code to Visual Basic 3.0 using the Data Control to replace
some database code. The problem was that when I would print an empty field to the printer (i.e.
Printer.Print Data1.Recordset("Field1")) instead of the printer printing nothing it would print
'**NULL**'. This was VERY frustrating. To get around this problem I wrote the following Sub
Routine:
Sub PrinterPrint (something as Variant)
 If IsNull(something) = False Then
 Printer.Print something
 Else
 Printer.Print ""
 End If
End Sub
Then, using the DOS edit program I replaced all occurrences of 'Printer.Print' with 'PrinterPrint'.
Submitted By: Mike Payne

Copying Rows In Access
It is always a good idea to do a MoveLast and a MoveFirst after opening a snapshot or dynaset. It
makes sure the BOF, EOF, and RecordCount properties (mostly RecordCount) are correct. This
fixes it for you.
Suppossedly, RecordCount is set correctly when you first open a snapshot, but the listbox test
showed otherwise.
Try it yourself. Here is the solution code with my debug lines commented out.

Sub CopyRows ()
 Dim i As Integer
 Dim db As Database
 Dim snap As Snapshot
 Dim tbl As Table
 Dim wSQL As String
 Set db = OpenDatabase("MYDATA.MDB", False, False)
 Set tbl = db.OpenTable("Table1")
' select the rows to be copied into a snapshot object
 'List1.Clear 'Mark's debug code
 wSQL = "Select * from Table1 where Field1 = 'A'"
 'I also changed your sql statement a
 'little, removed characters I don't use, but I don't
 'think it made any difference.
 Set snap = db.CreateSnapshot(wSQL)
 snap.MoveLast '<===== MoveLast initializes RecordCount of snap
 snap.MoveFirst '<===== Need to MoveFirst
 'List1.AddItem snap.RecordCount 'Mark's debug code
 'List1.AddItem "**" 'Mark's debug code
' loop through all rows in the snapshot
 Do Until snap.EOF
 tbl.AddNew
 ' copy each field in the snapshot row to the table row
 For i = 0 To snap.Fields.Count - 1
 tbl.Fields(i).Value = snap.Fields(i).Value
 Next i
 ' change the value of the other field
 tbl.Fields("Field2").Value = "B"
 ' insert the new row into the table
 tbl.Update
 ' Ack! Here's the problem. This "tbl.Update" also is
 ' updating the contents of the snapshot. Meaning the
 ' "snap.MoveNext" will never get to EOF!
 'List1.AddItem snap.RecordCount 'Mark's debug code
 'List1.Refresh 'Mark's debug code
 'DoEvents 'Mark's debug code
 snap.MoveNext
 Loop
' close everything
 snap.Close
 tbl.Close

 db.Close
End Sub
Tip By: Kyle Lutes

Buttons & Image Control
 Image Control As A Button
 Mouse Button Up Or Down Status

Image Control As A Button
One of the easiest techniques for adding graphical effects to your program is to use an image control
as a button. When the image control receives a Click event, you simply substitute the value of the
Picture property. The key to this technique is to define a pair of invisible image controls with pictures
corresponding to the up and down status of the control.
For example, you could create a button that visually represents a locked and unlocked state. One
advantage of using icon files rather than bitmap files is that any underlying image shows through the
mask area of the icon.
When the form is loaded, the Form_Load event procedure sets the appropriate image in the image
control:
Sub Form_Load()
 Padlock.Picture = LockOpen.Picture
End Sub
The image control responds to the click event by replacing the picture in the control:
Sub Padlock_Click()
Static LockedFlag As Integer
If LockedFlag Then
 Padlock.Picture = LockOpen.Picture
 Else

 Padlock.Picture = LockClosed.Picture
End If
LockedFlag = Not LockedFlag
End Sub
Source: Microsoft Developer Network News, July 1993

Mouse Button Up Or Down Status
Here is how to check the mouse button 'up_or_down' status.
Declare Function GetKeyState Lib "user" (ByVal k%) As Integer
Declare Function GetAsyncKeyState Lib "user" (ByVal k%) As Integer
This functions will tell you whether a key is up or down, and if it's "toggled". The high order bit tells
you if the key is up or down. The low order bit tells you if it's toggled - each time the key is pressed
and then released the low order bit will change.
The first function maintains the keyboard state when the last *window message* was received by the
app and is the one you normally use. The second one corresponds to the real time keyboard state.
Now, why on earth do I talk keyboard when the question was about the mouse? - That's because the
mouse buttons are considered as "virtual" keyboard keys. Some virtual key codes are:
VK_LBUTTON 1
VK_RBUTTON 2
VK_MBUTTON 4
VK_TAB 9
VK_ESCAPE 27
So to wait for the left mouse button to be first pressed and then released you could use:
Do While GetKeyState(VK_LBUTTON)>=0: DoEvents: Loop
Do While GetKeyState(VK_LBUTTON)<0: DoEvents: Loop
Submitted By: Dan Bystrom - InterNet:adbbyd@msmail.hk-r.se

Controls
 Using Controls Indirectly To Change Data
 Copying Data From A Grid Control

Using Controls Indirectly To Change
Data

In certain cases, you might not want the user to change data in a control directly, but indirectly using
another control. This technique can minimize, or even eliminate the process of validating user input.
Let's say you want the user to enter a due date that is from 1 to 30 days from today's date. You can
solve this scenario by using a horizontal scroll bar that modifies the Caption property of a label:

The scroll bar property settings are:
LargeChange=5
Min=1
Max=30
Every time you change the scroll bar value, the HScroll1_Change event procedure is generated,
which in turn calls the DisplayDate procedure:
Sub HScroll1_ Change ()
 DisplayDate
End Sub
Sub DisplayDate ()
 TimeVal = Now + HScroll1.Value
 Label1.Caption = Format(timeVal, "mm/dd/yy")
End Sub
The TimeVal variable contains the current time returned from the Now function plus the current
setting of the scroll bar's Value property (1-30). In Visual Basic, adding integer values to a time value
increments the time value by days.
Lastly, to set the initial date value on the label, you need to call the DisplayDate procedure when the
form is loaded:
Sub Form_Load ()
 DisplayDate
End Sub

Source: Microsoft Developer Network News, September 1993

Copying Data From A Grid Control
The grid control in Visual Basic provides the CLIP method for copying cells to the clipboard from the
grid. The CLIP method puts a tab between each column and a line feed between each row. This
works great for copying to Excel (I have not tried other spreadsheets), but does not work well
copying into word processors because only the line feed is placed between each row, not line feed
and carriage return. The Visual Basic manual describes how to insert the carriage return by copying
the string one character at a time, inserting the carriage return in the appropriate places. Copying
the grid with both line feed and carriage return allows pasting in Excel and word processors.
Looking at each character is time consuming. I have found that it is faster to copy each cell
individually, inserting the tab and CR/LF characters as needed.
Below is the routine I use to copy an entire grid. Note that fixed rows and columns are not copied.
To copy fixed rows and columns, you would set First_Col and First_Row to 0.
Note also that I set the MousePointer to 11 (Hourglass) at the begining and set it back to 0 (default)
at the end. This is because large grids may still take a few seconds to copy on slower systems.
Sub CopyGrid_Click ()

Dim CopyText, NC, NR As String
Dim First_Col, First_Row As Integer

screen.MousePointer = 11

Clipboard.Clear

 NC = Chr$(9)
 NR = Chr$(13) & Chr$(10)

 First_Col = datagrid.Fixedcols
 First_Row = datagrid.FixedRows

 For i% = First_Row To datagrid.Rows - 1
 datagrid.Row = i%
 For j% = 0 + First_Col To datagrid.Cols - 1
 d atagrid.Col = j%
 If j% = First_Col Then
 CopyText = CopyText & datagrid.Text
 Else
 CopyText = CopyText & NC & datagrid.Text
 End If
 Next
 CopyText = CopyText & NR
 Next

 Clipboard.SetText CopyText

 screen.MousePointer = 0
End Sub
Submitted By: Dennis Cabell

Disks & Files
 Formatting A Foppy Disk

Formatting A Foppy Disk
Below is code on how to format a floppy disk from Visual Basic for Windows.

Type Rect
 Left As Integer
 Top As Integer
 Right As Integer
 Bottom As Integer
End Type

Declare Sub SetWindowPos Lib "User" (ByVal hWnd As Integer, ByVal
hWndInsertAfter As Integer, ByVal x As Integer, ByVal Y As Integer,
ByVal cx As Integer, ByVal cy As Integer, ByVal wFlags As Integer)
Declare Sub GetWindowRect Lib "User" (ByVal hWnd As Integer, lpRect As
Rect)
Declare Function IsWindow Lib "User" (ByVal hWnd As Integer) As Integer
Declare Function WinExec Lib "Kernel" (ByVal lpCmdLine As String, ByVal
nCmdShow As Integer) As Integer
Declare Function SetActiveWindow Lib "User" (ByVal hWnd As Integer) As
Integer Declare Function GetActiveWindow Lib "User" () As Integer
Declare Function LockWindowUpdate Lib "User" (ByVal hwndLock As Integer)
As Integer
Declare Function GetDesktopWindow Lib "User" () As Integer
Declare Function FindWindow Lib "User" (ByVal lpClassName As Any, ByVal
lpWindowName As Any) As Integer
Declare Function PostMessage Lib "User" (ByVal hWnd As Integer, ByVal
wMsg As Integer, ByVal wParam As Integer, ByVal lParam As Long) As
Integer
Const WM_COMMAND = &H111
Const WM_CLOSE = &H10
Dim wFlag%
Dim lpDlgRect As Rect
Dim lpDskRect As Rect
Const SWP_NOSIZE = &H1
Const SWP_NOZORDER = &H4

Sub CenterDialog (WinText As String)
 Do
 If FindWindow(0&, WinText) Then Exit Do
 x% = DoEvents()
 Loop

 wnd% = GetActiveWindow()
 Call GetWindowRect(wnd%, lpDlgRect)
 wdth% = lpDlgRect.Right - lpDlgRect.Left
 hght% = lpDlgRect.Bottom - lpDlgRect.Top
 Call GetWindowRect(GetDesktopWindow(), lpDskRect)
 Scrwdth% = lpDskRect.Right - lpDskRect.Left
 Scrhght% = lpDskRect.Bottom - lpDskRect.Top
 x% = (Scrwdth% - wdth%) / 2
 Y% = (Scrhght% - hght%) / 2
 Call SetWindowPos(wnd%, 0, x%, Y%, 0, 0, SWP_NOZORDER Or SWP_NOSIZE)
End Sub

Sub FMFormat (F As Form)

 FMhWnd = FindWindow("WFS_Frame", 0&)

 If FMhWnd = 0 Then

 i% = WinExec("Winfile", 0)
 FMhWnd = FindWindow("WFS_Frame", 0&)
 If FMhWnd = 0 Then
 MsgBox "FileMan ain't home"
 Exit Sub
 End If
 wFlag = 1
 End If

 i% = LockWindowUpdate(GetDesktopWindow())

 i% = PostMessage(FMhWnd, WM_COMMAND, &HCB, 0)

 Call CenterDialog("Format Disk")

 i% = LockWindowUpdate(0)

 wnd% = GetActiveWindow()

 While IsWindow(wnd%)
 x = DoEvents()
 Wend

 x = DoEvents()

 If wFlag Then
 wFlag = 0
 i% = PostMessage(FMhWnd, WM_CLOSE, 0, 0)
 End If

 i% = SetActiveWindow(F.hWnd)

End Sub

Tip By: Woody Pewitt

Forms
 Detecting Previous Instances Of A Program
 Portable Forms
 Setting The "TabIndex" Property
 Setting Video Resolution for Multiple Forms

Detecting Previous Instances Of A
Program

There are times when you may want to prevent a second instance of your program from running. The
App object provides a PrevInstance property that allows you to determine whether a previous
instance of the program is running. Here's how you might write your code:
Sub Form_Load ()
If App.PrevInstance Then
 msg$ = App.EXEName & " already running "
 MsgBox msg$, 48
 End
End If
End Sub
Notice that the procedure uses the EXEName property of the App object to display the program's
name in the Visual Basic message box.
Source: Microsoft Developer Network News, July 1993

Portable Forms
The following gives a nice way to produce forms on one screen resolution while keeping the same
aspect ratio on other resolutions.
While designing a form the programmer should choose the twips unit, and should always design
using one fixed resolution (i.e. 800x600). What I mean by that is when a button is designed on an
800x600 screen it will become larger and maybe outside the screen area on a 640x480 screen.
To avoid such an annoyance we should read Screen.Width and Screen.Height during design time,
and during run time. This will provide us with a ratio with respect to the reference at design time. This
ratio is then used to readjust the form, shape, and/or button or all of the visible controls when the
form is run. For example try:
Shape1.Width = Shape1.Width * Ratio
Where Ratio is Screen.Width / SCREEN_WIDTH_REFERENCE for the X coordinate, in a similar
way this could be done for the Y coordinate.
Submitted By: Nadim El-fata

Setting The "TabIndex" Property
Here is a no-fuss method of setting the "TabIndex" property at design time.
One of the most enjoyable features of the Visual Basic environment is its ease of form design. Just
plop some controls on a form, drag them around until you get the most appealing layout and you're
done. Except of course you have to go back and set the "TabIndex" property for all the controls to
match your final design.
My method used to be to click the first control, set its "TabIndex" to 0, click the next control set its
"TabIndex" to 1, ... until I discovered this trick. Start with the last control (usually the bottom right)
and work your way backwards (left and to the top). Each time you click a control set its "TabIndex"
property to "0". When you reach the first control all "TabIndex" properties will now be in the correct
order. This method works since VB references the "TabIndex" property for all controls on the form
when you change the property to a value that already exists on another control. This method is
even easier with the new properties window in VB3 because the "TabIndex" property will keep the
focus even as you click controls. Just keep one finger on the "0" button and the other on the mouse.
Then click, press "0", click, press "0", click press "0"...
Submitted By: Kyle Lutes

Setting Video Resolution for Multiple
Forms

Following is a subroutine that will set the video resolution for multiple forms.
Load Form
Call SetDeviceIndependentWindow(Form)
Form.Show
The subroutine was in a different module and this has always worked for
me but I also have never tried to call it from the Form Load Event.
As a side note, I had to make a change in the subroutine in order for it work with my machine. The
subroutine relies on the fact that Screen.TwipsPerPixelX, Screen.TwipsPerPixelY will change
according to whatever video resolution is selected. My problem may be due to the fact that the
video drivers for the Cirrus Logic video chip have been written poorly but on my system irregardless
of what video resolution I was in 640 x 480, 800 x 600, etc. the value for Screen.TwipsPerPixelX or Y
never changed from 12 but I have worked on other machines with different video cards and the value
did change. I have included a modified version of the routine.

Sub SetDeviceIndependentWindow (TheForm As Form)
 Dim DesignX%
 Dim DesignY%
 Dim XFactor As Single
 Dim YFactor As Single
 Dim Z As Integer
' DesignX% = 12
' DesignY% = 12
' XFactor = DesignX% / Screen.TwipsPerPixelX
' YFactor = DesignY% / Screen.TwipsPerPixelY
** This is what I changed, I design my screens to look appropriate for
VGA
and
** then resize the screen if the user is using a higher video
resolution
>
> XFactor = Screen.Width / 9600
> YFactor = Screen.Height / 7200
>
> If XFactor = 1 And YFactor = 1 Then
> Exit Sub
> End If
 TheForm.Move TheForm.Left * XFactor, TheForm.Top * YFactor,
TheForm.Width * XFactor, TheForm.Height * YFactor
 For Z = 0 To TheForm.Controls.Count - 1
 'If TypeOf TheForm.Controls(Z) Is CommonDialog Then
 If TypeOf TheForm.Controls(Z) Is Timer Then
 ElseIf TypeOf TheForm.Controls(Z) Is Menu Then
 ElseIf TypeOf TheForm.Controls(Z) Is Line Then
 ElseIf TypeOf TheForm.Controls(Z) Is DriveListBox Then
 TheForm.Controls(Z).Move TheForm.Controls(Z).Left * XFactor,
TheForm.Controls(Z).Top, TheForm.Controls(Z).Width * YFactor
 ElseIf TypeOf TheForm.Controls(Z) Is ComboBox Then
 If TheForm.Controls(Z).Style <> 1 Then
 TheForm.Controls(Z).Move TheForm.Controls(Z).Left *
XFactor,
TheForm.Controls(Z).Top * YFactor, TheForm.Controls(Z).Width * XFactor
 End If
 Else
 TheForm.Controls(Z).Move TheForm.Controls(Z).Left * XFactor,
TheForm.Controls(Z).Top * YFactor, TheForm.Controls(Z).Width * XFactor,
TheForm.Controls(Z).Height * YFactor
 If TypeOf TheForm.Controls(Z) Is TextBox Then
 TheForm.Controls(Z).FontSize =
TheForm.Controls(Z).FontSize
* XFactor
 ElseIf TypeOf TheForm.Controls(Z) Is Label Then
 TheForm.Controls(Z).FontSize =

TheForm.Controls(Z).FontSize
* XFactor
 End If
 End If
 Next Z
End Sub
Tip By: Russell Brandon

Graphics
 Decoding Binary CGM Graphics

Decoding Binary CGM Graphics
Here is how you decode binary CGM (Computer Graphics Metafile) files in Visual Basic 3.0 std. The
binary CGM standard specifies byte-order and bit-order for multi-byte binary numbers as left-to-right
(big-Endian), but the PC byte order is not left-to-right, it is little-Endian.
Byte-swapping is simple in C or C++, but not so simple in visual basic. (Problems with sign extension
in signed integer types, and no unsigned integer types.) Thus, I used the following function to swap
two-byte integers:
Function SwapBytes (num As Integer) As Integer
' Take an input integer, assumed to be in "left to right" byte order,
and convert it to "standard" Intel format by swapping the two bytes.
Dim TextVal As String
Dim NewTextVal As String
Dim StringLength As Integer
TextVal = Hex$(num)
StringLength = Len(TextVal)
Select Case StringLength
Case 1
 NewTextVal = "&H" & "0" & TextVal & "00"
Case 2
 NewTextVal = "&H" & TextVal & "00"
Case 3
 NewTextVal = "&H" & Right$(TextVal, 2) & "0" & Left$(TextVal, 1)
Case 4
 NewTextVal = "&H" & Right$(TextVal, 2) & Left$(TextVal, 2)
End Select
SwapBytes = Val(NewTextVal)
End Function
Submitted By: Steven W. Layten - InterNet: swl26@cas.org

This Topic Is Under Construction!

List Boxes
 How To Find Program Manager Groups
 Tab Stops In A List Box

How To Find Program Manager
Groups

Below is how to get a list of all the Program Manager groups into a list box.
There are two ways to do this that I know of. One is an API call that uses the Progman.Ini file. I

like the second method which uses Dynamic Data Exchange (DDE).
1 Place a textbox, a listbox, 2 labels, and 1 command button on a form. Keep the default

names.
Sub Form_Load ()
 Move (screen.Width - Width) \ 2, (screen.Height - Height) \ 2
 text1.LinkTopic = "Progman|Progman"
 text1.LinkItem = "Progman"
 text1.LinkMode = 2
 text1.LinkRequest

 On Error Resume Next
 text1.LinkMode = 0

 text$ = text1.Text
 length = Len(text$)
 ReDim x$(length)

 text1.SetFocus

 For i = 1 To length
 dummY$ = Mid$(text$, i, 1)
 If dummY$ = Chr$(13) Then
 i = i + 1
 a = a + 1
 End If
 x$(a) = x$(a) + dummY$
 Next i
 text1.Visible = False
 For i = 1 To a
 x$(i) = Mid$(x$(i), 2, Len(x$(i)) - 1)
 list1.AddItem x$(i)
 Next i
 list1.ListIndex = 0
End Sub

Sub List1_Click ()
 label1.Caption = list1.Text
 text1.Text = list1.Text
End Sub

Sub Command3D1_Click ()
 Unload form1
 End
End Sub
I started this because I wanted my users to be able to choose what group my program would be
installed to. To do that you would just need to add a line of code to the Form_Load procedure, and
add another Command button. Attach code to the new button that initiate DDE again, and use
CreateGroup, Additem, and ShowGroup. If anyone wants this, send me Email via Internet.

Michael.Eaton@bbs.meu.edu.
Submitted By: Michael Eaton

Tab Stops In A List Box
The standard Visual Basic list box supports tab stops. This means that if the string value you add to
the list box contains tab characters, the tabs cause the list box to display columns of strings.
Here's how to add the first item to the list box:
t=Chr$(9)
name="Michael Cage"
list1.AddItem name + t + "44" + t + "C/F"
You could also narrow the width of the list box so that you don't display the second and third
columns. This technique allows you to store multiple strings per item, while only displaying the first
string. Notice, however, that you would need to write additional code to extract specific strings.
Taking the idea of a list box as a storage mechanism one step further, you could make the list box
invisible and only refer to it in your code.
Source: Microsoft Developer Network News, July 1993

Menus
 Pop-up Menus
 Help Menu On Right Side Of Menu Bar

Pop-up Menus
One of the new features of Visual Basic 3.0 is pop-up menus. You can easily create a pop-up menu
from an existing menu structure. Let's look at how you would create a pop-up menu from the
traditional menu in the Blanker sample application provided with Visual Basic (in your VB\SAMPLES\
GRAPHICS directory).
First, use Menu Design windows to set the Visible property of mnuOption to False. Then, add the
following event procedure to display the pop-up menu:
Sub Form_MouseUp (Button As Integer,...)
If Button = 2 Then
 PopupMenu mnuOption
End If
End Sub
Notice that the Form_MouseUp event procedure uses the right mouse button to display the menu.
Source: Microsoft Developer Network News, July 1993

Help Menu On Right Side Of Menu
Bar

To position the Help Menu to the right side of the Menu Bar, use a backspace character (Chr$(8)) as
the first character in the Caption property of the menu. You must do this at runtime, in the Form_Load
event.
HelpMenu.Caption= Chr$(8) & HelpMenu.Caption
Tip By: Brian Dalton

Miscellaneous
 Automatic Selection Of Text
 Creating Screen Savers
 Easy Help
 Finding Hard/Floppy/Removable Drives
 Imitating A Combo Box
 Reading INI Files
 Re-reading The WIN.INI File
 Printer Control
 Setting TabIndex At Design Time
 Starting A Large Application
 Tool Box
 Restarting/Exit Windows

Automatic Selection Of Text
When using text boxes, it is often useful to generate automatic selection of text when the control gets
focus. You can do this easily by adding a couple of lines to the GotFocus event procedure:

Sub Text1_GotFocus ()
Text1.SelStart = 0
Text1.SelLength = 65000

End Sub
Notice that the length value for SelLength is 65000, nearly the maximum length allowed in a text box.
This forces Visual Basic to use the actual length of the text as the SelLength.
Source Microsoft Developer Network News, July 1993

Creating Screen Savers
Overview:
Have you ever wanted to write your own screensaver, but was told, "You can't do that in Visual
Basic!" In fact, one person I heard from told me that Microsoft said that screensavers were
impossible in Visual Basic. I didn't believe hem, and this is the result.
Windows screensavers are easy and fun to write in Visual Basic, but there are some very important
things to know.
Experts can go straight to the Code Section of this document.

Description:
Application Title:
A Windows screensaver is nothing more that a regular Windows executable file that has been
renamed with the .scr extension. In Visual Basic, when you are making the executable file, you will
need to set the Application Title in the Make EXE dialog box. This Application Title MUST be set to
"SCRNSAVE title", where title is the text you want displayed in the Control Panel screensaver
dropdown box.

Command Line Arguments:
When Windows starts up a screensaver it calls it with the "/s" argument, and when it wants to Setup
the screensaver it uses the "/c" argument. So, we use a code module called SCRNSAV.BAS. In
SCRNSAV.BAS you will see that a Select Case statement is used to capture this argument. You will
need to change the Startup Form in the options|Project Dialog Box to Sub Main.

Telling Windows that the Saver is Running:
How long Windows waits before loading the screensaver is specified in the Control Panel. But if your
screensaver doesn't tell Windows that it is running, Windows will reload the screensaver after that
time passes again, even though the screensaver is already running. At first I thought I could remedy
this situation by using VB 3.0's App object. The App.PrevInstance property will tell you whether or not
there is a previous instance loaded.
This should've worked, and I got many comments saying that I must have messed something up, but
it didn't. For some reason, with the screensaver this kills both instances, not just the second. But
there is a way out. To fix this I found a Windows API call which tells Windows that the screensaver is
inactive, so don't load one. To use this API you need to use the API call SystemParametersInfo. This
function is used to change system wide parameters, such as whether or not the screensaver is
active. Be careful when using this call, since changes are permanent. You will need to make sure
that your screensaver turns the screensaver back off when it has ended.
See Sub Main, and Sub ExitNice in the Code Section.

Hiding The Cursor:
When you write a screensaver, you'll want it to hide the mouse cursor as well as whatever else your
saver does. To do this you need to use the API call - ShowCursor. When ShowCursor(False) is
called, the cursor is hidden; when ShowCursor(True) is called, the cursor is re-displayed. The
Windows cursor is a shared object, so if your process hides it your process needs to redisplay it as
well. See Code section.

Knowing when to end:
When your screensaver ends is up to you, but generally you'll want it to end if any of the following
occur: mouse moves, button pressed, key pressed. To do this you will need to call a routine to exit
properly from each of these
 events in your screensaver form. See SaverForm. You need to call this routine because this is
where the other half of the SystemParametersInfo call is made. If this is left out, the screensaver

won't run again after it wakes up. Another problem is that the MouseMove message is sent if the
cursor is over the form, REGARDLESS if it is moved or not. So, you need to check to see if it has
moved somehow. See the Code Section for my solution. (Not necessarily the prettiest.

Code:
ScrnSave.Bas
declarations
 DefInt A-Z
 Const SWP_NOSIZE = 1
 Const SWP_NOMOVE = 2
 Const SPI_SETSCREENSAVEACTIVE = 17
 Declare Function ShowCursor Lib "User" (ByVal bShow As Integer) As
Integer
 Declare Sub SetWindowPos Lib "User" (ByVal hWnd, ByVal After, ByVal
X,
 ByVal Y, ByVal cx, ByVal cy, ByVal Flags)
 Declare Function SystemParametersInfo Lib "User" (ByVal uAction,
ByVal
 uParam, lpvParam As Any, ByVal fuWinIni)
 Sub Main
 Select Case Command$
 Case "/s", "/S"
 Res = SystemParametersInfo(SPI_SETSCREENSAVEACTIVE, 0, ByVal 0&,
0)
 Load SaverForm
 SetWindowPos SaverForm.hWnd, -1, 0, 0, 0, 0, SWP_NOMOVE Or
SWP_NOSIZE
 ok = DoEvents()
 Case "/c", "/C"
 ConfigForm.Show
 End Select
 End Sub
You may also need to add some initialization code for whatever your screensaver does.

Sub ExitNice
 Res = ShowCursor(True) 'Turn the cursor back on
 'reset screensaver
 Res = SystemParametersInfo(SPI_SETSCREENSAVEACTIVE, 1, ByVal 0&, 0)
 End
 End Sub
Saver.Frm
 Form_Load
 WindowState = 2 'Maximize the screensaver
 Me.Show 'Show the form
 This = ShowCursor(False) 'Hide the cursor
 Form_MouseMove
 If (OldX = 0) And (OldY = 0) Then
 OldX = X
 OldY = Y
 Exit Sub
 End If
 If (OldX <> X) Or (OldY <> Y) Then
 ExitNice
 Else
 OldX = 0
 OldX = 0
 End If
 Form_Click
 ExitNice
 Form_MouseDown
 ExitNice
 Form_KeyDown
 ExitNice
 Form_KeyPress
 ExitNice
Config.Frm
Windows will pass the "/c" argument to Sub Main if the "Setup" option is chosen from control panel.
Here you can setup specific options for your screensaver. You might want to save these options in
a .ini file (win.ini or your own). Its up to you! If your Config.Frm has a "Test" feature which starts the
screensaver from the Config form, then you will need to be careful about remembering to turn on the
cursor after the screensaver starts, and then turn it off before it ends.

Sources:
Conger, James L.., The Wait Group's Windows API Bible: The Definitive Programmer's Reference.
The Wait Group: 1993. ISBN 1-878739-15-8
VBZ: The Electronic Journal on Visual Basic. Copyright 1993 User Friendly, Inc. Issue 01:
January/February 1993

Disclaimer/Distribution:
This information is provided free of charge, and may be freely distributed. If you use portions of this
document elsewhere, please indicate where you got it. All of the information here has been used and
tested by me in Visual

Basic 3.0 Professional. Use at your own risk. Visual Basic and Microsoft Windows are registered
trademarks of Microsoft Corp.
Submitted By: Peter Provost (provost@cs.colostate.edu)

Easy Help
I created a simple VB for Windows program that print company files to any network printer. I
designed it to be easy to operate. When I went to write the help file, I decided against it. This would
mean I would have to provide an additional file with the program and the time involved to write the
help file was too much. I decided to add a text box with one line of help for each button.
I started by creating a SSPanel using the THREED.VBX file (any type of text box will do just fine).
Then using the MouseMove event I added the following lines:
Sub Print_Now_MouseMove (Button As Integer, Shift As Integer, X As
Single, Y As Single)
HelpText = "Sends the selected file to the selected location"
End Sub

It's that simple! You can also use MouseDown, MouseUp, GotFocus events. I found the MouseMove
the easiest to use. Just make sure when you code your program that all the buttons and the form
have some kind of help text otherwise the mouse could be over a button and display the wrong help
line.
Submitted By: David McCarter

Finding Hard/Floppy/Removable
Drives

If you need to find what floppy drives, hard drives or removable drives (CD-ROM/Network) there is
on a system, declare the following in a BAS file:
Declare Function GETDRIVETYPE Lib "Kernel" (ByVal nDrive As Integer) As
Integer

You must pass this function the drive number, not a drive letter. Drive numbers always start a 0. For
instance, drive A: is drive #0, Drive C: is drive #2.
DRIVETYPE = GETDRIVETYPE(DRIVENUM)
This function returns a 2 for removable drives, 3 for fixed drives or 4 for remote drives. This function
will return a 0 if it is passed a drive number that does not exist on the system.
Submitted By: David McCarter

Imitating A Combo Box
To imitate a ComboBox that behaves like the one that appears in the "Search" option of Help, use
this tip.
First, create a Textbox (eg. Text1) and a Listbox (eg. List1). Then paste the following code into the
Declarations section of a form that contains the textbox and the listbox, and the bottom part of the
code into a separate module.
Note the flags (in the declaration part of the module) that make this code not reentrant: it only permits
one "combo" at a time (though many per application), but you can change this easily.

Code for module:

Option Explicit
Global CHClickList As Integer
Global CHInChange As Integer
Sub CtrlTB_Change (OTB As TextBox, OLB As ListBox)
 Dim Pos As Integer, I As Integer, L As Integer
 Dim Aux As String
 If CHClickList Then
 CHClickList = False
 Exit Sub
 End If
 Aux = OTB.Text
 L = Len(Aux)
 For I = 0 To (OLB.ListCount - 2)
 If Not StrComp(Aux, Left$(OLB.List(I), L), 1) > 0 Then
 Exit For
 End If
 Next I
 OLB.TopIndex = I
 OLB.ListIndex = I
End Sub
Sub CtrlTB_KeyPress (OTB As TextBox, OLB As ListBox, KeyAscii As
Integer)
 If KeyAscii = 13 Then
 OTB.Text = Left$(OLB.List(OLB.ListIndex), 60)
 CHInChange = False
 Else
 CHInChange = True
 End If
End Sub
Sub CtrlLB_Click (OTB As TextBox, OLB As ListBox)
 If Not CHInChange Then
 OTB.Text = Left$(OLB.List(OLB.ListIndex), 60)
 Else
 CHInChange = False
 End If
End Sub
Sub CtrlLB_MouseDown ()
 CHClickList = True
End Sub
Code:

Sub List1_Click ()
 CtrlLB_Click Text1, List1
End Sub
Sub List1_MouseDown (Button As Integer, Shift As Integer, X As Single, Y
As Single)
 CtrlLB_MouseDown
End Sub
Sub Text1_Change ()
 CtrlTB_Change Text1, List1
End Sub
Sub Text1_KeyPress (KeyAscii As Integer)
 CtrlTB_KeyPress Text1, List1, KeyAscii
End Sub
Submitted By: Hernan Martinez Foffani, Buenos Aires - Argentina: email -
hernan@condor.satlink.net

Reading INI Files
This is the subroutine I use to read INI files.
Function GetFromINI (SectionHeader$, VarName$, FileName$) As String
 Dim RetStr As String
 RetStr = String(255, Chr(0))
 'Get Requested Information
 GetFromINI = Left(RetStr, GetPrivateProfileString(SectionHeader$,
ByVal
 VarName$, "", RetStr, Len(RetStr), FileName$))
End Function
Of course declare the following:
Declare Function GetPrivateProfileString Lib "Kernel" (ByVal
lpApplicationName As String, lpKeyName As Any, ByVal lpDefault As
String, ByVal lpReturnedString As String, ByVal nSize As Integer, ByVal
lpFileName As String) As Integer
So you'd call it using something like:
Result = GetFromINI(Section, Variable name, Filename)
Submitted By: Daniel Bowen, Melbourne, Australia

Re-reading The WIN.INI File
To notify other apps on WIN.INI file changes, do:
SendMessage(HWND_BROADCAST, WM_WININICHANGE, 0, 0)
HWND_BROADCAST = &HFFFF
WM_WININICHANGE = &H001A
Tip By: James Shields

Printer Control
A user can control *everything* (printer, paper size, orientation, print quality, etc.) from within the print
setup common dialog. In fact, here is all the code you need:
Sub FilePrintSetup_Click ()
Dim Msg$
 On Error GoTo FilePrintSetupError
 CMDialog1.Flags = PD_PRINTSETUP ' Just enable print setup
 CMDialog1.Action = DLG_PRINT ' Show printer setup dialog box
PrintSetupExit:
 Exit Sub
FilePrintSetupError:
 If Err <> CDERR_CANCEL Then ' If user didn't select CANCEL
 Beep
 Msg$ = "Error" & Str$(Err) & ": " & Error$
 MsgBox Msg$, MB_ICONEXCLAMATION, "Error"
 End If
 Resume PrintSetupExit
End Sub
The capitalized constants are defined in CONSTANT.TXT. You do need t to set the CancelError
property to True if you want the CDERR_CANCEL error to indicate the user pressed Cancel. (Even
this really isn't needed, though).
Submitted By: Stephen C. Smith

Starting A Large Application
If you have a large Visual Basic application, it can take a while to load. The user sometimes may
think that the application has failed to load when infact it has not yet loaded (or failed to load!).
Therefore, a good idea may be to have a small Visual Basic program that starts another much larger
one.
To do this one has to use the SHELL command. But, this in itself is not enough, since the 'loading'
form will not display before the shelled app. starts.
This is solved easily by the use of a Timer, which delays the SHELL command, thus allowing the
starting form to display - with a suitable message, eg; "Loading Application, please wait..."
1. Create a form (herein called RunForm) with a Timer, a suitable message, and attributes as
below, or as necessary.
ClipControls = 0 'False
 ControlBox = 0 'False
 MaxButton = 0 'False
 MinButton = 0 'False
 Tag = "RunForm"
 Timer Timer1
 Interval = 20 'Alter interval if req.

2. For the timer event, add the following code:
Sub Timer1_Timer ()
 Static NextOne
 If Not NextOne Then
 X = Shell(Filename, 1)
 Unload RunForm
 End If
 NextOne = Not NextOne
 End Sub
Submitted By: Darren Newbold > E-Mail: cdn@dmu.ac.uk

Tool Box
To create a tool box for your application, simply set up a form as a parent and another form as your
toolbox/floating dialog whatever. In a suitable declarations section declare the API function as
follows:
Declare Function SetParent% Lib "User" (ByVal hWndChild%, ByVal
hWndNewParent%)
For a floating toolbox over a parent form, try the following in the routine to show the toolbox:
Sub ShowTbox_Click ()
Dim ret As Integer
If doshow = False Then 'toolbox not visible
 ret = SetParent(tbox.hWnd, parent.hWnd) 'this makes the toolbox float
 tbox.Left = 0 'sets position to top left corner of parent
 tbox.Top = 0
 tbox.Show 'makes toolbox visible
 'try tbox.show 1 i.e. modal to see what happens
 doshow = True
 Showtbox.Caption = "&Hide Toolbox"
 Else
 tbox.Hide

 doshow = False
 Showtbox.Caption = "&Show Toolbox"

End If
End Sub

A couple of small caveats however. If you try tbox.show 1 i.e. modal you'll find the form will show but
you will be unable to do anything with it. Secondly you absolutely *MUST* unload the child form i.e.
tbox BEFORE unloading the main form otherwise your program will crash.
Submitted By: Matthew Dexter - InterNet:ch01md@surrey.ac.uk

Restarting/Exit Windows
Listed below is a subroutine that will quit windows in three different ways if needed. Passing 1 to it
will reboot the computer, passing 2 will restart Windows, and passing 3 will exit Windows and return
to DOS.
Put this on one line in the declarations section:
Declare Function ExitWindows Lib "User" (ByVal RestartCode As Long,ByVal
DOSReturnCode As Integer) As Integer
Then add this subroutine to a module:
Sub ExitWin (ByVal nExitOption As Integer) Dim n As Integer
n = MsgBox("Do you really want to exit Windows?", 36, "Exiting")

If n = 7 Then Exit Sub 'User chose NO
Select Case nExitOption

Case 1
n = ExitWindows(67, 0) 'reboot the computer

Case 2
n = ExitWindows(66, 0) 'restart Windows

Case 3
n = ExitWindows(0, 0) 'exit Windows

End Select
End Sub
Tip By: Brian Simper

Text Boxes
 Masking Input
 Horizontal Scrollbars
 Ignoring Keyboard Input

Masking Input
For greater control of data input, you might consider using the masked edit control. This control is
included with the Visual Basic Professional Edition, along with many other custom controls.
The masked edit control provides a Mask property that lets you specify an input mask of literals and
place holders. Literals provide visual cues about the type of data being used - for example,
parentheses indicate a telephone area code. Placeholders represent a specific type of required value
- for example, the # symbol indicates that you can only enter a decimal value (0-9).
Here's how you might set the Mask property to indicate a telephone number:
Mask (###)###-####
At run time, the insertion point moves to the first placeholder:

The underscores in the control represent characters to enter. In this case, you can enter only
numeric characters.
Source: Microsoft Developer Network News, September 1993

Horizontal Scrollbars
The reson you put a horzontal scrollbar on a textbox is usually because you want your text to be
wider than the textbox control itself. However, if you set the horizontal scrollbar property to true on a
multiline textbox, the text will no longer automatically wrap. The way I work around this is to set the
with of the rect (EM_SETRECT) to my desired width when the form loads. I don't use the scroll bars
property in the textbox. Instead, I place a horizontal scrollbar control below my textbox. I create my
own sub that scrolls the text left and right by moving the rect (not changing size). I monitor the KeyUp
and MouseUp events using the GetCaretPos function: I call the sub when required or if the scrollbar
is changed.
Sub Form1_load (...etc...)
 Dim rtn&
 Dim Posn As Rect
 rtn& = SendMessage(Text1.hWnd, EM_GETRECT, 0, Posn)
 'get original rect
 Posn.right = NewWidth%
 'formatting width you require
 rtn& = SendMessage(Text1.hWnd, EM_SETRECT, 0, Posn)
 'set new rect width
End Sub
Sub ScrollRect (ByVal hWnd%, direction%)
 Dim rtn&
 Dim Posn As Rect
 rtn& = Send Message (hWnd%, EM_GETRECT, 0, Posn)
 'get current rect
 'to move rect left direction% is a negative number
 'to move rect right direction% is a positive number
 Posn.left = Posn.left + direction%
 Posn.right = Posn.right + direction%
 rtn& = SendMessage(hWnd%, EM_SETRECT, 0, Posn)
 'move rect left or right
End Sub
Tip By: Douglas Marquardt

Ignoring Keyboard Input
Here's an easy way to have your application ignore all input from the keyboard except for the Return
and Backspace keys. (I wrote this code while creating a timer application that required text boxes
that would accept only numbers.)
Sub Text1_KeyPress (KeyAscii As Integer)
 If KeyAscii = 13 Then
 KeyAscii = 0 'Prevents the system from beeping
 'Code or Sub to execute at Return
 End If
 If KeyAscii = 8 Then Exit Sub 'Allow use of backspace key
 If KeyAscii < 48 Or KeyAscii > 57 Then KeyAscii = 0 'Ignore other
keys
End Sub
This technique can be used to include ore exclude any characters based on their values in the ASCII
character set.
Tip By: Daniel Switkin

Windows
 Keeping A Window On Top

Keeping A Window On Top
To keep a program window on top (always visible) in Visual Basic use a WINAPI function.
Code in Main Module:
Declare Sub SetWindowPos Lib "User" (Byval hWnd as integer, Byval
hWndInsertAfter as Integer, Byval X as Integer, Byval Y as Integer,
Byval cx
as Integer, Byval cy as Integer, Byval wFlags as Integer)
Code in a Submodule:
SetWindowPos form1.hWnd, -1, 0, 0, 0, 0, &H50 'This will make the window
always visible!
Code in Submodule 2:
SetWindowPos form1.hWnd, -2, 0, 0, 0, 0, &H50 'This will put "Always
Visible" off!
Submitted By: Henk Hakvoort

Windows 3.1 Help Files
 Adding Sound To A Help File
 Calling WINHELP
 Creating Bullets

Adding Sound To A Help File
To add sound support for .wav files in a windows help file:
In the [CONFIG] section of the project file:
RegisterRoutine("mmsystem","sndPlaySound","Si")
To call the DLL in a macro as a hotspot:
!sndPlaySound("anything.wav",0)
This is a way cool to way to build documents. It *could* be easier though.
Submitted By: Tod Massa - InterNet: MASSATR@SLUVCA.SLU.EDU

Calling WINHELP
Listed below are keywords used by WINHELP and an example on how to use it.
'Help engine declarations.
'Commands to pass WinHelp()
Global Const HELP_CONTEXT = &H1 ' Display topic identified by number in
Data
Global Const HELP_QUIT = &H2 ' Terminate help
Global Const HELP_INDEX = &H3 ' Display index
Global Const HELP_HELPONHELP = &H4 ' Display help on using help
Global Const HELP_SETINDEX = &H5 ' Set an alternate Index for help file
with more than one index
Global Const HELP_KEY = &H101 ' Display topic for keyword in Data
Global Const HELP_COMMAND = &H102 ' Execute Help macro
Global Const HELP_MULTIKEY = &H201 ' Lookup keyword in alternate table
and display topic
Declare Function WinHelp Lib "User" (ByVal hWnd As Integer, ByVal
lpHelpFile As String, ByVal wCommand As Integer, dwData As Any) As
Integer
Type MULTIKEYHELP

mkSize As Integer
mkKeylist As String * 1
szKeyphrase As String * 253

End Type
Case 2 ' Help Search Command

HelpCmd = HELP_COMMAND ' Set help command to bring up
search box

curFile = App.HelpFile
curData = "Search()" ' Data is macro to be executed by WinHelp

' To make this work, we need to do two help commands in succession, so
we'll do one here and one down below. The commented line 2nd below is
the command to be executed to bring up the search dialog.
result = WinHelp(hWnd, curFile, HELP_INDEX, 0&)
result = WinHelp(hWnd, curFile, HELP_COMMAND, ByVal "Search()")
Submitted By: Gary Ferguson - InterNet: GARYFE@MICROSOFT.COM

Creating Bullets
One night I spent at least 2 hours trying to figure out how to create bullet items in a Windows 3.1
Help File. I found some Microsoft documentation which in both places it showed how to do it wrong!
Below is the way that I found that works when using the QDHelp shareware program to compile the
RTF file:
/para \tx360 \li360 \fi-360
{\f1 \'B7} \tab
Configurable to use many different sizes of diskettes.
Can even use 3 1/2 1.4MB (2.7MB) floppies compressed with Stacker.
/endpara
The '\tx360' RTF command sets the first tab stop to 360. The '\li360' sets the left indent to 360 and
the '\fi-360' sets the first line indent to -360 or 0 in this case. The '\f1' sets the font to #1, which should
be the Symbol font. The '\'B7' is the hex code for the bullet character in the Symbol font. The '\tab'
moves the first line of text to the tab stop created with '\tx360'.
Here is what it looks like:

Submitted By: David McCarter

Other Sources Of Help
 Help Files
 Microsoft "Suggestion Box"
 User Groups (InterNet)

Help Files
Visual Basic for Windows: Tips & Techniques
This very informative Windows Help File is released monthly (I think) and contains all of Knowledge
Base articles.
This is a list of the main topics: VB Programming Using Standard Controls, VB Programming
Using Custom & Third-Party Controls, Optimization, Memory Management, & General VB
Programming, Advanced VB Programming -- Networks, APIs, DLLs, Graphics, Data Access & VB
Database Programming, VB Design Environment, Running VB Applications, General VB References
& Documentation Corrections, VB Setup, Installation, CDK, Help Compiler, DDE, & OLE
You can get the latest files off the Microsoft BBS or thru InterNet. The compressed file name is
VBKB.EXE. This file comes with no search capibilities. If you want to search for topics or text,
download VBKB_FT.EXE. Even though this file is much larger than the other, the search function in
very valuable.

Sample
Visual Basic for Windows: Bugs, Fixes, & Updates
Instead of beating your head against the wall wondering why something won't work the way you think
it should, first refer to this help file. I contains a list of unfixed bugs, fixed bugs (I guess that Microsoft
knows about) and updates that are avaliable.
This is a list of the main topics: Unfixed Bugs, Fixed Bugs, Updates Available.
You can get the latest file off the Microsoft BBS or thru InterNet. This help file comes with
VBKB_FT.EXE.

Sample

Microsoft "Suggestion Box"
Microsoft has set up a "suggestions box" account on the Internet. Send suggestions for any Microsoft
product to: mswish@microsoft.com.
On the Subject line, please try to include the following information: product name - product version -
platform - suggestion summary.
To: mswish@microsoft.com.
Subject: Visual Basic - 3.0 - Windows - Support custom cursors It would be really cool if Visual Basic
could load and display arbitrary .CUR files.
--
vbuser@somewhere.edu
You can use this account to make suggestions for any Microsoft product. They will be automatically
entered in a database and brought to the attention of the R&D teams for that product. Of course, we
can't guarantee that your suggestion will appear in the next version, but it will be considered and
prioritized in conjunction with all the other
suggestions. Additional information describing how you are using the product (and thus how this
suggestion would help you) is useful in this regard.

Please don't use this alias to report bugs; it's not set up to handle bug reports. We may set up such
an account in the future. For now, the best way to report bugs is via Compuserve or a phone call to
Product Support (who may be able to provide you with a workaround if it is a known bug).

User Groups - InterNet
VISBAS-L
This Visual Basic user forum is actually a server located at the Texas A&M University. Users send
questions to this server and the question get broadcasted to over 600 subscribers (some include
employees at Microsoft). From the beginner to advanced programmer, this list is GREAT place to find
good help.

How To Subscribe:
Send a e-mail message to the following address:
LISTSERV@tamvm1.tamu.edu
In the body of the message type:
SUB VISBAS-L <your name>
Leave out signatures and the subject. This will just cause error messages to be sent back to you
from the server.

 VISBAS-L FAQ

VISBAS-L FAQ
These are some of the Very Frequently Asked Questions for the VISBAS-L list. This list is devoted
to the discussion
of Microsoft Visual Basic and related topics.

LISTSERV fundamentals
How do I get off of this list?
Easy. Send the mail command UNSUB VISBAS-L to LISTSERV@tamvm1.tamu.edu (this address
is a program).

What if this doesn't work?
Networks being dynamic beasts, your e-mail address that is given in your mail message could have
changed since you first subscribed. You may not even be aware of this change since many of us
are on mail forwarding systems.
In this case, just send a note to owner-visbas-l@tamvm1.tamu.edu (this address is a human)
requesting that you be removed.

How do I access the old messages?
If you are getting this advanced, you should probably send the mail message:
HELP
To LISTSERV@tamvm1.tamu.edu.
To get a list of the files available, send the command INDEX VISBAS-L. To retrieve one of the files,
send the command GET VISBAS-L LOGyymm, where yy is the year and mm is the month.

Did my mail message get out?
By default, all new subscriptions are set up so that they do not receive a copy of their own mail.
However, you will
receive an acknowledgement from the LISTSERV system when your mail is distributed. There are
two options available to find out whether your mail was sent.
Sending the command REPRO will send a copy of your message to you. NOREPRO will turn this
option back off.
Sending the command ACK will tell LISTSERV to send an acknowledgement to you when it
distributes your mail. NOACK will turn this option off.

How do I get the full FAQ?
Once it is ready, I will make it available on tamvm1.tamu.edu and you can retrieve a copy by send a
LISTSERV GET command.

Where can I get free support?
Here. This is why I set up this list. Microsoft provides several support services, but all of the cost
money. At present, Microsoft does not provide free support for Visual Basic.
Unfortunately, this seems to be an industry trend. I have read articles about other companies that
are cutting back on their free support personnel, or even not answering the free support lines.

Are there any rules about messages that can be posted?
Yes. All things in moderation.
However, there are a few things that really get on the list maintainers bad side.
1 Disrespect for other subscribers. If they are jerks, the rest of us can figure it out for ourselves.
2 Chain letters (MAKE MONEY FAST).
3 UUENCODEd binaries.

Programmer Tools
 Forms/Modules
 Programs
 VBX Files
 DLL Files

This purpose of this section is to let programmer know about Freeware VBX & DLL files and
programs to make life easier for programmers. Developers of these types of programs are welcome
to submit their program to us to be included with this help file.

Programmers Tool Programs
MessageBox Value

If you are like me, I can never remember all the different Message Box values available for use in
Visual Basic for Windows. When ever I create a new message box, I always have to consult the
Visual Basic help file. MessageBox Value takes care of this problem!
With MessageBox Value, you choose what buttons you want to use, which icon, which button is the
default, task or system modal and MessageBox Value displays the Message Box value to use. You
can even copy the value to the clipboard and paste it into Visual Basic.
This program is great for (as the developer puts it), "people with small memories",
MessageBox Value Is Developed By:Gavin Lazarow File Name: MSGVAL.ZIP

VB Program Updates
Updated On: 2/10/94
Visual Basic/Help Compilers
BTR110.EXE 71581 09-03-93 Updated Btrieve ISAM Driver Shipped W/Access
DATAINDX.EXE 36583 09-13-93 Index for the Data Access Guide -Professional Features
Book 2
DATAMGR.EXE 38690 07-27-93 Source Code for Data Manager Tool
GENERIC.EXE 29705 07-27-93 CDK Sample left out of VBWIN 3.0
GRID.EXE 41357 07-27-93 Updated GRID.VBX, version 3.00.0538
HC505.EXE 228685 11-15-93 New Help Compiler for Use with WinWord 6.0 RTF File
Format
HEALTH.EXE 250522 07-28-93 VBWIN 3.0 Pen Windows Sample Application
INSURE2.EXE 105250 07-28-93 VBWIN 3.0 Pen Windows Sample Application
LOANAPP.EXE 94661 07-28-93 VBWIN 3.0 Pen Windows Sample Application
MSAJT110.EXE 363656 10-20-93 Updated Access Engine Library, v 1.10.0001
MSCOMM.EXE 28231 07-27-93 Updated MSCOMM.VBX, version 2.1.0.1
ORA110.EXE 122816 09-02-93 Updated Oracle ODBC Driver Shipped W/ Access
RECEIPT.EXE 135573 07-28-93 VBWIN 3.0 Pen Winodws Sample Application
SETUPK.EXE 75847 10-20-93 Updated Setup Toolkit - SETUP.EXE, SETUP1.FRM,
and SETUPWIZ.EXE
SQLUPDT.EXE 636209 09-13-93 Updated SQL & Oracle drivers
VBCOMDEM.EXE 30099 11-03-93 SIMPCOMM: Communications Demo Using Windows
API's
VBKB.EXE 929182 12-06-93 Visual Basic Knowledge Base
VBKB_FT.EXE 2563620 12-06-93 VB KB Help Files w/ Full-Text Search
VBPRINT.EXE 95978 09-13-93 Sample Application and DLL that Demonstrate Advanced
Printing in VB.
VBRUN100.EXE 172991 07-27-93 Copy of VBRUN100.DLL
VBRUN200.EXE 220504 07-27-93 Copy of VBRUN200.DLL
VBRUN300.EXE 246754 07-27-93 Updated copy of VBRUN300.DLL, v3.00.0538
XBS110.EXE 153916 07-27-93 Updated XBase driver, version 1.00.0002

Access
ACCBUG.TXT 29225 3-15-93 Bug list for MS Access. Contains known bugs and
workarounds.
ACCFIX.TXT 34593 06-30-93 Known bugs that have been fixed in Access1.1
DDESRV.TXT 14341 07-08-93 Using Microsoft Access as a DDE Server
Q88164.TXT 6110 11-01-92 Intro to Windows Programming for MS-DOS Programmer
Q88173.TXT 2421 11-01-92 ODBC Setup for Access and SQL Server
Q88175.TXT 6026 11-01-92 Creating, Debugging, and Using an Access Library
Q88635.TXT 3268 07-28-93 How to Force a Cascading Delete
Q88653.TXT 4882 11-01-92 How to List the Related Tables in a Database
Q88655.TXT 7597 11-01-92 How Access Uses SQL Server Connections
Q88658.TXT 2622 11-01-92 Using TransferDatabase Macro to Attach to SQL Server
Data
Q88907.TXT 4399 11-01-92 How to Modify the Toolbar in MS Access
Q88914.TXT 1023 11-01-92 Running MS-DOS SHARE with Windows for Workgroups
Q88940.TXT 6062 11-01-92 How to Dim (Gray) Menu Items with Access Basic
Q88999.TXT 1749 11-01-92 When to use Macros and When to use Access Basic
Q89590.TXT 1394 07-28-93 Making ENTER Add Lines in a Text Box
Q89594.TXT 3213 11-01-92 How to Display Immediate Window Without Module
Window
WX0635.TXT 10260 09-10-93 Database Structure Questions & Answers

WX0636.TXT 5474 09-11-93 Access Basic and Macros Questions & Answers
WX0637.TXT 8147 09-10-93 Forms Questions & Answers
WX0638.TXT 8320 07-19-93 Nontechnical and Marketing Q& A
WX0639.TXT 9330 09-10-93 Querying Questions & Answers
WX0640.TXT 4661 09-11-93 Reports Questions & Answers
WX0811.TXT 11179 09-09-93 Interoperability with Other Applications Q&A
WX0812.TXT 12521 09-10-93 Setup Questions & Answers
WX0838.TXT 6423 06-20-93 Microsoft Access Questions & Answers
WX0867.TXT 9219 09-09-93 Access Distribution Kit Questions & Answers
4MEG.EXE 14402 1-08-93 performance enhancement suggestions for running
Microsoft Access on a computer with 4 megs. of memory.
ACC-IN.EXE 1821938 02-01-94 Access Knowledge Base (KB) Help File
ACC-KB.EXE 1389099 02-01-94 Access Knowledge Base (KB) Help File
ACCADD.EXE 31601 02-12-93 Additional information on reported problems.
ACCSRV.EXE 23089 2-12-93 WinWord Template using Access as a DDE Server
BTR110.EXE 71581 12-07-93 Updated Btrieve Drive (Version 1.10.0011) for Access 1.1
CHOOSE.EXE 130760 05-25-93 This document addresses the breadth of database
users and the unique challenges each group may face. It goes on to provide Microsoft's answer to
these challenges in terms of appropriate database tools.
DDL100.EXE 45060 06-09-93 DLL to create & manipulate objects in AB. For Access
V1.0 (Not Supported by PSS)
DDL110.EXE 38979 06-18-93 DLL to create & manipulate objects in AB. For Access
V1.1 (Not Supported by PSS)
ERLIST.EXE 26417 2-12-93 List of Access Basic error messages
ORA110.EXE 122816 12-07-93 Updated ODBC Oracle Driver for Access 1.1
OUTPUT.EXE 206085 2-12-93 Saving report output to a file
PACKPT.EXE 50319 07-08-93 Updated version of Microsoft Object Packager
PRMPT.EXE 183011 05-12-93 Prompt.mdb sample-"Running Microsoft Access"
SECURE.EXE 37316 10-07-93 Additional Microsoft Access Security document
SECWIZ.EXE 211276 10-07-93 This wizard makes implementing database security and
easy task with fixes for SYBASE SQL Server 4.8 and 4.9
SPT100.EXE 73938 06-09-93 SQL Pass-through DLL for Access 1.0
SPT110.EXE 69878 06-18-93 SQL Pass-through DLL for Access 1.1
SQL100.EXE 43338 06-14-93 INSTCAT.48 and INSTCAT.SQL Catalog Stored
Procedure scripts v 1.0 for ODBC
SQL110.EXE 29171 06-14-93 INSTCAT.SQL Catalog Stored Procedure script for Access
1.1 and SQL.
TIMER.EXE 31404 2-12-93 TIMERDLL.DLL for creating a background timer
UTIL.EXE 53641 07-07-93 MS Access v1.1 UTILITY.MDA file
WX0964.EXE 211148 12-08-93 SecurityWizard and White Paper
All these file are available from the MicroSoft BBS: 1-206-936-6735

Release History
Version 1.4 Released on: 2/15/94 - File Name: VBTIPS14.ZIP (68 Topics)
Version 1.3 Released on: 1/3/94 - File Name: VBTIPS13.ZIP (49 Topics)
Version 1.2 Released on: 11/29/93 - File Name: VBTIPS12.ZIP
Version 1.1 Released on: 10/1/93 - File Name: VBTIPS11.ZIP
Version 1.0 Released on: 9/9/93 - File Name: VBTIPS10.ZIP

About The Developer
The Visual Basic Tips & Tricks Help File Is Compiled By:
David McCarter
I can be reached at:
DPM Computer Solutions
8430-D Summerdale Road
San Diego, CA 92126-5415
USA.
InterNet-DPMCS@HIGH-COUNTRY.COM
Compuserve Users-Contact me using the address: INTERNET:DPMCS@HIGH-COUNTRY.COM
All brand names and product names used in this help file are trademarks, registered trademarks or
trade names of their respective holders.
If I (or someone that I know) has tested the submitted code to make sure that it works, then we tell
you by adding a graphic like the one below for the Visual Basic version it was tested.

Disclaimer: I will try to make sure that all the coding in this help file is correct and works! I am not
responsible for any damage that might happen to your computer or programs. REMEMBER...save
your work before trying any coding listed here.
This help file is freeware, but if you would like to make a donation, any amout will be accepted. Also,
10% of all donations will go to chairity, the rest will go to purchase programs (we will try to buy only
shareware) to keep this project going. Please make checks payable to: David McCarter.

This Help File was written with the following shareware
programs:
Visual Help V2.0j - Developed By: WinWare, P.O. Box 2923, Mission Viejo CA 92690. CompuServe
Address: 70272,1656

About Visual Basic Tips & Tricks
The future of this project rests on your shoulders... I wanted to develop this help file to provide some
sort of centralized forum for users to share VB Tips & Tricks. I want to pool information from many
different sources into one help file. As you might already know, Microsoft books and help files are (in
my opinion) not written very well. They do not contain much help that a normal programmer might
want. Some of their information is even printed wrong! So where does one turn? To off-the-shelf
books, user forums, magazine articles and the like. Try to keep all that organized to retrieve the
information you need quickly. Not so easy, is it?
I want this help file to provide HELP with small VB Tips & Tricks. Undocumented ones, work
arounds, easier way to do things etc... But I need your help!. I need your input!
Please submit your VB Tips & Tricks for others to use. Since this help file is freeware, the only thing
you will receive is your name embedded in this help file forever.

How to submit your VB Tips & Tricks:
Write down your tip or trick explaining exactly what is it is. Provide any coding (make sure it works)
and graphics if you want. Text must be is ASCII format and graphics must be 16 color in a BMP
format.

Send your tip or trick to:
DPM Computer Solutions
c/o VB Tips & Tricks
8430-D Summerdale Road
San Diego, CA 92126-5415 USA
Please submit them on a 3 1/2 disk using a floppy disk mailer.

You can also save some $$$ and electronically send it to me at:
InterNet - DPMCS@HIGH-COUNTRY.COM
CompuServe - INTERNET:DPMCS@HIGH-COUNTRY.COM
Send any files using uuencoding.

How To Receive Updates:
The easiest way is to receive them electronically through e-mail. To get on the e-mailing list just
submit a VB Tip or Trick! Use my e-mail address above and send me your name, e-mail address,
coding preference (uuencode or binhex) and file size limitations your system might have long with
your VB Tip or Trick. This will also be posted on many InterNet systems and BBS systems to be
listed below.

Where To Find New Issues:
BBS Systems:
The Centre (New Zealand): (09) 443-7679 (V22bis, V32, V42bis, MNP5)
Windows-R-Us (San Diego, CA): (619) 944-7368 2400/ 1200/ 300. (619) 944-8583 USR 14.4.
HighCountry East (San Diego, CA): 619-789-4391 USR Dual Standard V32bis, 619-788-0831
Compucom. San Diego callers use 619-440-0231

InterNet FTP Sites:
CICA: ftp.cica.indiana.edu [129.79.20.17]
GARBO: garbo.uwasa.fi

On-Line Services:
CompuServe: File name= VBTIPS.ZIP

Glossary Of Topics
#
.WAV

A
About The Developer
About Visual Basic Tips & Tricks
Adding Sound To A Help File
AddItem
App.EXEName
App.PrevInstance
Automatic Selection Of Text

B
Bullets in a Help File
Button

C
Calling WINHELP
Change
Chr
CLIP
Clipboard.SetText
CMDialog
Copying Data From A Grid
Copying Rows In Access
Creating Bullets
Creating Screen Savers

D
datagrid.Fixedcols
datagrid.FixedRows
Declare Function
Declare Function
Declare
Declare
Declare
Decoding Binary CGM Graphics
Detecting Previous Instances Of A Program
Developer Address
Developer InterNet Address
DIR$
Disclaimer

Disks & Files

E
Easy Help
ExitWindows

F
Finding Directores in VB DOS
Finding Hard/Floppy/Removable Drives
Format
Formatting A Foppy Disk

G
GETDRIVETYPE
GetKeyState
GotFocus

H
Help Menu On Right Side Of Menu Bar
Horizontal Scrollbars
How To Find Program Manager Groups
How to submit your VB Tips & Tricks
HScroll
HWND_BROADCAST

I
Ignoring Keyboard Input
Image Control As A Button
Imitating A Combo Box
InterNet
IsNull

K
Keeping A Windows On Top
KeyAscii
KeyPress

M
Masking Input
Max
Microsoft "Suggestion Box"
Min
Mouse Button Up Or Down Status
MouseDown
MouseMove
MousePointer
MouseUp

N
Now

O
Other Sources Of Help

P
Picture
Pop-up Menus
Portable Forms
Printer Control
Printer.Print
Printing Blank Fields
Program Manager Groups
Programmer Tools

R
Re-reading The WIN.INI File
Reading INI Files
RegisterRoutine
Release Histroy
Restarting/Exit Windows

S
Screen Savers
SelLength
SelStart
SendMessage
SendMessage
Setting TabIndex At Design Time
Setting The "TabIndex" Property
Setting Video Resolution For Multiple Forms
SetWindowPos
Starting A Large Application

T
Tab Stops In A List Box
TabIndex
TabIndex
Text Boxes
TimeVal
Tool Box

U
Updates
User Groups - InterNet

Using Controls Indirectly To Change Data

V
VISBAS-L FAQ
VISBAS-L
Visual Basic for Windows: Bugs
Visual Basic for Windows: Tips & Techniques
Visual Basic Tips & Tricks Updates
Visual Basic Tips & Tricks
VK_ESCAPE
VK_LBUTTON
VK_MBUTTON
VK_RBUTTON
VK_TAB

W
WAV
Width
WINHELP
WM_WININICHANGE

Frequently Asked Questions
 Automatic Selection Of Text
 Finding Drive Types
 Restarting/Exiting Windows From VB

Form_Load() Events
 Detecting Prevous Instances Of A Program

Setting TabIndex At Design Time
One of the most enjoyable features of the Visual Basic environment is its form-design facilities. Just
plop some controls of a form, drag them around until you get the most appealing layout, and your
done. Except, of course, you have to go back and set the TabIndex property for all the controls to
match your final design.
My method used to be to click the first control and set its TabIndex to 0 (zero), click the next control
and set its TabIndex to 1, and so on - until I discovered this trick: Start with the last control (usually
the bottom right) and work your way backwards (left and to the top). Each time you click a control,
set its TabIndex property to 0. When you reach the first control, all TabIndex properties will be in the
correct order.
This method works because VB resequences the TabIndex property for all controls on the form when
you change the property to a value that already exists on another control. With the properties
windows in VB 3.0, the TabIndex property will keep the focus even as you click controls. Just keep
one finger on the 0 button and another on the mouse. Then click, press 0, click, press 0, click, press
0, and so on.
Tip By: Kyle Lutes

Title

